
1

Robert Beane

University of Minnesota Morris

https://github.com/Robert-Beane

2

What is UMMLaundry?

UMMLaundry is a web app for the students

of Morris to easily see how many laundry

machines are currently being used and if it

would be a good time to do laundry. Each

hall has its own dedicated page listing all

machines. Each machine includes time

remaining or the amount of time since its

been last used.

There is also a simple status indicator

telling the user how many of each machine

type are available, running or broken. If a user discovers that a

machine is broken, there are buttons within each machine that

send the user to a report form with pre-filled in information

regarding what machine is broken and

where.

If all machines are running, a user can sign

up for email notifications for the entire

room or their favorite machine. They will

then get an email letting them know their

machine or any machine is available to be

used. The webpage is also compatible with

all modern browsers meaning it can be

accessed almost anywhere and still function

properly.

3

How we Made UMMLaundry

The final project was a product of

four different iterations with four

different teams. Tools such as

JetBrains IntelliJ IDEA and ZenHub

were used throughout the

development of the web app. A mix

of different languages were used

when developing the final product.

Different Frameworks

Throughout development,

frameworks used stayed the same.

Angular 8 was used for all thing’s client side and Angular Material

for styling and icons. The server was comprised of a Java Spark

server with MongoDB serving as our database. Hosting took place

through DigitalOcean along with later iterations using Cloudflare

to allow HTTPS to be used.

Languages and Tools Used

For the client side, we used Typescript with Angular. We used a

large assortment of different HTML and CSS elements throughout

the web app. Yarn was used for installing packages. Testing relied

on Karma and Jasmine. Third party dependencies such as Chart.JS

and ngx-cookie-service were used within the project.

42%

41%

12%

5%

Languages Used

TypeScript Java HTML CSS

4

Using Agile Throughout the Iterations

During the course, we actively used an agile approach. At the very

start, the class created an inception deck so we could have ideas

of what the final project would contain and maybe look like. We

had a showcase every two weeks to show off our teams work to

the customer and received useful feedback. We also had the

customer “shop” the stories we had chosen for that iteration.

Throughout every iteration, we used ZenHub through GitHub to

help us display our stories and make estimates for each story. At

the end of the iteration, we had a completed burndown chart. We

also used ZenHub to create issues regarding the iteration so we

had an updated list of known issues so we could know what we

needed to fix before the iteration deadline.

5

My Personal Contributions

Throughout the iterations, my main focus was with the user

experience on the front end through Angular, Material and CSS.

Besides the front end, I also was the one that deployed the

iteration’s project on DigitalOcean.

With iteration one, I focused on how machines were displayed.

The implementation was very minimal, the only notable things that

kind of stayed were the addition of color indicators for the status

of the machines. I also worked on basic sorting which sometimes

worked and sometimes did not.

With iteration two, I mainly focused on the addition of a proper

dark mode. Dark mode was something that was overlooked and

forgotten about with the first iteration, so it was added with this

iteration.

Iteration three had

the most changes

out of all the

iterations. My main

focus for iteration

three was the addition of cookies. We used a dependency called

ngx-cookie-service which had the exact functions we needed.

When a user set a specific room as their default, cookies were

stored which then redirected the user on refresh to the page they

set as default. Another use of cookies that I added was the

function of being able to set a preference for the graph. I used

cookies to remember either bar or line which was then called

6

within the buildchart() function. Besides my

work on cookies, I also worked on some CSS

and HTML. I added an angular snackbar to pop

up when a user set a room as default to let the

user know that they actually set a room as

default. Since I added the functionality of

switching graph types, I added two buttons that

would change the graph type and set the

correct cookie. Along with all the client-side

changes, I also set the

website up with a proper

domain and set up

HTTPS with Cloudflare.

Our final iteration, iteration four, contained a lot of final

adjustments and finalizing what exactly was wanted from the

customer. I worked on adding different color progress bars to

match up with the status of the machine making it easier for the

user to tell the difference. I also did some work on the overall

colors of the web app, finalizing exactly what colors and where we

wanted the colors to go. I deployed the project in the same way I

did for iteration three. However, we had issues with the graph

showing data from six hours in the future. Because of this, I had to

fiddle with the DigitalOcean droplet to make it so the data is

displayed at the correct time. I also worked on finalizing the

README and writing documentation to explain certain elements

of the project. I also created the pamphlet for our iteration.

7

Links

GitHub Page

https://github.com/UMM-CSci-3601-F19/iteration-4-rockin-reindeer

GitHub Repository

https://github.com/UMM-CSci-3601-F19/iteration-4-rockin-reindeer.git

Promotional Pamphlet

https://github.com/UMM-CSci-3601-F19/iteration-4-rockin-

reindeer/blob/master/Documentation/softDesignBrochure.jpg

